Currency Exchange Rate Forecasting using Associative Models

نویسندگان

  • Omar Shatagua Jurado-Sánchez
  • Cornelio Yáñez-Márquez
  • Oscar Camacho Nieto
  • Itzamá López-Yáñez
چکیده

Associative Models were created and used for pattern recognition tasks, but recently such models have shown good forecasting capabilities; by a preprocessing of a time series and some fit of the Model. In this paper, the Gamma Classifier is used as a novel alternative for currency exchange rate forecasting, where experimental results indicate that the proposed method can be effective in the Exchange Rate Time Series Prediction, compared to classical Machine Learning Models (ANN, SVM, MLP) and well known for the Financial and Economy Fields Box-Jenkins Models (AR, ARMA, ARIMA).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Comparison among ARIMA and hybrid ARIMA-GARCH Models in Forecasting the Exchange Rate of Iran

This paper attempts to compare the forecasting performance of the ARIMA model and hybrid ARMA-GARCH Models by using daily data of the Iran’s exchange rate against the U.S. Dollar (IRR/USD) for the period of 20 March 2014 to 20 June 2015. The period of 20 March 2014 to 19 April 2015 was used to build the model while remaining data were used to do out of sample forecasting and check the forecasti...

متن کامل

Simulating Exchange Rate Volatility in Iran Using Stochastic Differential ‎Equations‎

‎The main purpose of this paper is to analyze the exchange rate volatility in Iran in the time period between 2011/11/27 and 2017/02/25 on a daily basis. As a tradable asset and as an important and effective economic  variable, exchange rate plays a decisive role in the economy of a country. In a successful economic management, the modeling and prediction of the exchange rate volatility is esse...

متن کامل

Forecasting of Foreign Currency Exchange Rate Using Neural Network

Abstract-Foreign exchange market is the largest and the most important one in the world. Foreign exchange transaction is the simultaneous selling of one currency and buying of another currency. It is essential for currency trading in the international market. In this paper, we have investigated Artificial Neural Networks based prediction modelling of foreign exchange rates using five different ...

متن کامل

Using a Fuzzy Auto Regressive Integrated Moving Average Model for Exchange Rate Forecasting

Forecasting models have wide applications in decision making. In the real world, rapid changes normally take place in different areas, specifically in financial markets. Collecting the required data is a main problem for forecasters in such unstable environments. Forecasting methods such as Auto Regressive Integrated Moving Average (ARIMA) models and also Artificial Neural Networks (ANNs) need ...

متن کامل

Using a Fuzzy Auto Regressive Integrated Moving Average Model for Exchange Rate Forecasting

Forecasting models have wide applications in decision making. In the real world, rapid changes normally take place in different areas, specifically in financial markets. Collecting the required data is a main problem for forecasters in such unstable environments. Forecasting methods such as Auto Regressive Integrated Moving Average (ARIMA) models and also Artificial Neural Networks (ANNs) need ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Research in Computing Science

دوره 78  شماره 

صفحات  -

تاریخ انتشار 2014